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12 Calculus 

Calculus is often seen as a complex and advanced area of mathematics, probably due to the 

complicated algebra required to solve calculus problems analytically.  This is unfortunate, as 

calculus is based around some very simple and useful concepts which have immediate uses 

in a variety of subject areas.  Complicated algebra can often be avoided by using simpler 

numerical methods which give acceptable accuracy. This then allows students to focus on 

interpreting the results produced.  

Calculus can be divided into two main branches, differentiation and integration: 

The objective of differentiation is to analyse a mathematical function to determine the rate 

at which the function is changing at different points. The rate of change is often expressed 

as the ratio of the sides of a triangle drawn as a tangent to the curve: 

𝑟𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒 =  
𝑑𝑦

𝑑𝑥
 

 

 

 

 

 

 

 

Figure 369:  Gradient of a function 

The relationship between a function value and its rate of change can be important in a 

variety of contexts.  For example, the rate at which heat is lost from a room depends on the 

temperature of the room, and the rate at which new bacteria are produced depends on the 

current number of bacteria in the colony. 

The approach taken in advanced-level mathematics courses is generally to use algebraic 

methods to determine a formula for the rate of change of a function.  The rate of change is 

known as the derivative.  For example, the function: 

𝑦 = 𝑥3 

has the derivative: 

𝑑𝑦

𝑑𝑥
= 3𝑥2 
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x 

dx 
dx 

dy 
dy 
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           𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛        𝑦 = 𝑥3                                  𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒      
𝑑𝑦

𝑑𝑥
= 3𝑥2 

Figure 370:  Graphs of y=x3 and its derivative 

The function y=x3 has a double curve shape, rising steeply towards the origin, flattening out, 

then rising again increasingly steeply for positive x values.  The graph of the derivative is a 

parabola, curving down to a minimum of zero at x=0. 

By comparing the graphs above, we can see that the shape for the derivative is reasonable.  

If we were to examine points on the curve of y=x3 to assess the rate of change, all tangents 

would demonstrate an uphill positive slope with the exception of the point x=0 where the 

graph line is horizontal.  Furthermore, the curve is steepest at x-values which are furthest 

away from zero in either the positive or negative direction.  Looking now at the derivative 

curve, we see that all values are positive with the exception of the point x=0 where the rate 

of change is zero.  The derivative shows higher values for the rate of change as the x-values 

move further away from zero in both the positive and negative directions. 

The analytic method has been successful in determining the rate of change of the function 

y=x3, and can be used to find derivatives for a vast range of other functions.  However, the 

algebra involved can be complex, and often adds little to the understanding of the problem 

which is being investigated.  An alternative is to use numerical methods.  We will explore 

this approach by again examining the function y=x3. 

The simplest way to calculate the rate of change is Euler's method.  We begin by producing 

a table of numerical values for the function y=x3, as shown in figure 371.  Small steps for x of 

0.1 have been chosen, so as to obtain reasonable accuracy.  The change in y value for each 

increase in x value is used to determine the rate of change. For example, between the x 

positions of -3.0 and -2.9, we calculate that the y value changes from -27 to -24.39: 

𝑑𝑦

𝑑𝑥
=

(−27) − (−24.39)

(−3.0) − (−2.9)
=

−2.61

−0.1
 

𝑑𝑦

𝑑𝑥
= 26.1 

y dy 

x 

x 

tangents to the curve 

have a positive slope 
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Figure 371:  Determining the derivative of y=x3 by Euler's method 

By comparing figures 370 and 371, we see that the result obtained by the numerical method 

is very close to the analytical result, and would be satisfactory to use for most practical 

purposes.   

Integration is the second major branch of calculus.  We again start with a function, but we 

now determine the area underneath the graph, rather than its gradient. For example, the 

function: 

𝑦 = 𝑥3 
has the integral: 

∫ 𝑦. 𝑑𝑥 =
1

4
𝑥4 

 

 

 

 

 

 

 

 

           𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛        𝑦 = 𝑥3                                         𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙      ∫ 𝑦. 𝑑𝑥 =
1

4
𝑥4 

 Figure 372:  Graphs of y=x3 and its integral 

 

triangle with an 

area of 20 units 

for comparison 
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To find the area underneath the graph line of y=x3 between any two selected x-values, we 

obtain the values of the integral at the two x points, then subtract one from the other.  For 

example, to find the area under the graph between x=1 and x=3: 

  value of the integral at x = 1:             0.25 

  value of the integral at x = 3:   20.25 

Subtracting: 

                                       20.25 – 0.25   =  20.00 

This result seems reasonable when compared to a triangle of area 20 units which has been 

drawn next to the graph line.  

The area under the graph of a function can be important in a variety of calculations.  For 

example, the area under a velocity-time graph represents the distance travelled, and the 

area under a graph of electrical power in Watts against time in seconds represents electrical 

energy in Joules. 

As in the case of finding derivatives, it is possible to use analytic methods to obtain the 

integrals of a huge range of functions.  However, the algebra can again be complex and does 

not add much to the understanding of the task.  Sufficiently accurate results can usually be 

obtained in a more straight-forward way by numerical methods.  We will demonstrate the 

trapezoidal method by finding the area under the graph of y=x3 between the points x=1 and 

x=3.  This approach is illustrated in figure 373 below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 373:  Use of the trapezoidal method to find the area below the graph of y=x3  
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We begin by calculating values for the function y=x3 at closely spaced points between x=1 

and x=3.  An interval of 0.1 has been chosen to provide reasonable accuracy.  A series of 

rectangles are then constructed, and their areas found.  The area of each rectangle is 

calculated as the average of the function values at the start and finish of the interval, 

multiplied by the interval width of 0.1. 

 

 

 

 

 

 

 

 

 

Figure 374:  Estimating area below a graph by the trapezoidal method 

The calculated areas for the set of columns are added to obtain a final estimate of the area 

beneath the function curve.  We obtain a result of 20.02, which is sufficiently close to the 

accurate value of 20.00 for most practical purposes. 

In the sections which follow, we examine a number of numeracy projects involving the use 

of calculus.  Solutions will often be obtained by numerical methods, as these can be helpful 

to students in gaining a clearer understanding of the calculations required.   

 

Accelerated motion for a roller coaster 

Calculus techniques can be useful in analysing the motion of moving vehicles or machinery. 

In this section we will analyse data for the 'Crazy Caterpillar', a small roller coaster situated 

on Barmouth promenade.  Although very tame in comparison to its larger cousins, the Crazy 

Caterpillar does demonstrate some important basic principles of mechanics. 

The roller coaster has a figure-of-eight layout (figure 375), with the cars making two circuits 

at different levels.  After leaving the boarding station, the train accelerates down a short 

drop then run around a curve to the base of the lift hill.  The cars then ascend to the upper 

level at a height of four metres (figure 376). 

After running around the upper curve and crossing the centre of the site, the cars loop back 

around another upper level curve.  This brings the train to a final fast descent, in which the 

coaster reaches its maximum velocity (figure 377).  After rounding the curve at the lower 

level, the cars return to the boarding point.  

y2 

y1 

x1 x2 

𝐴 =
(𝑦1 + 𝑦2)

2
× 0.1 

area   

A 
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Figure 375:  Track layout for the Crazy Caterpillar roller coaster 
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Figure 376:  Cars on the lift hill and upper level track 
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Figure 377:  Cars descending the incline from the upper level to the lower level 

Our objective is to make an analysis of the motion of the roller coaster, in terms of the 

position, velocity and acceleration of the train of cars at different points around the track. 

The first step is to produce a profile diagram for the track.  Estimates of distances and 

heights along a circuit of the track are shown in figure 378.  The lift hill rises from point 3 to 

point 4, and the final fast descent occurs between points 6 and 7.  

 

 

 

 

 

 

 

Figure 378:  Height profile for a circuit of the roller coaster track 

Times were recorded as the front of the train passed each of the numbered points during a 

circuit, then a distance-time plot was produced (figure 379).  

 

 

 

 

Figure 379:  

Distance and time data for a circuit of 

the roller coaster track 
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Figure 380:  Distance-time curve for a circuit of the roller coaster track 

Average velocity can now be calculated for each section of the track.  Velocity is defined as 

change in position with time.  Using the convention that the symbol d represents the change 

in a quantity: 

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =
𝑑𝑠

𝑑𝑡
 

where s is distance and t is time.  Velocity can be estimated between the known points 

around the track using Euler's method.  Values are tabulated below. 

 

 

 

 

 

 

 

 

 

Figure 381:  Calculation of velocity data for the roller coaster 

The velocity data has been plotted on a time graph in figure 382.  At this stage, the points 

have been connected by straight lines.  This is an over-simplified interpretation, and the 

graph will be revised later in the procedure.   
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Figure 382:  Velocity-time data for a circuit of the roller coaster track 
 

Average acceleration can now be calculated for each section of the track.  Acceleration is 

defined as change in velocity with time.  Again using the convention that the symbol d 

represents the change in a quantity: 

𝑎 =
𝑑𝑣

𝑑𝑡
 

where a is acceleration, v is velocity and t is time. We might also describe acceleration as 

the rate of change of 'the rate of change of distance with time', giving the expressions: 

𝑎 =
𝑑

𝑑𝑡
 (

𝑑𝑣

𝑑𝑡
)  =

𝑑2𝑠

𝑑𝑡2
 

Euler's method can be used to estimate the acceleration between points on the track: 

 

 

 

 

 

 

 

 

Figure 383:  Calculation of acceleration data for the roller coaster 
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Figure 384:  Acceleration-time data for a circuit of the roller coaster track 

The initial plots of velocity and acceleration can now be refined to more closely represent 

the events taking place as a train of cars makes a circuit.  The area beneath the graph of 

acceleration represents velocity, as given by the integral:  

𝑣 = ∫ 𝑎. 𝑑𝑡 

Similarly, the area beneath the graph of velocity represents distance:  

𝑠 = ∫ 𝑣. 𝑑𝑡 

Whilst the shapes of the velocity and acceleration curves can be changed, we should try not 

to alter the total areas beneath the curves.  Final interpretations are given in figure 385 

below: 

 The train accelerates down a small slope after leaving the boarding station.  The 

velocity increases. 

 Deceleration occurs as the train approaches the base of the lift hill.  The train then 

ascends at a constant velocity. 

 At the top of the lift hill, the train is released down a gentle gradient and begins to 

accelerate.   

 The steepest section of the track is reached, and acceleration increases.  The cars 

reach their maximum velocity. 

 At the base of the descent, the cars climb a short slope and round a sharp curve, 

causing rapid deceleration before the boarding station is reached at the end of the 

circuit. 
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Figure 385:  Completed analysis of the roller coaster motion  
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The final curve is taken at quite a high speed.  Sharp and fast curves on roller coasters are 
often banked.  There are several good reasons for this.   

   When travelling around a curve, a centrifugal effect tends to impel the train straight 
ahead in a tangential direction.  Centripetal force is needed in order to maintain the 
turn and hold the cars on the track.  This force is provided by a horizonal reaction 
between the outer rail and the wheels.  This can lead to increased and uneven wear 
on the track and the axle bearings of the cars.  Banking the track reduces the amount 
of horizontal force which is applied to the car wheels. 

 Riders on a horizontal track experience a centrifugal effect which throws them 

sideways as the train rounds a curve at speed.  This can be uncomfortable.  The ride 

feels smoother if the track is banked. 

Ideally, a banking angle should be applied to the track which provides the exact turning 

force needed to counter the centrifugal effect of the curve. The cars will then round the 

curve with minimal sideways force against the wheels, and riders will not experience a 

sideways pull. 

The angle of banking will depend on both the speed of the train and the radius of the curve.  

A steeper banking angle is needed for a higher speed and a tighter curve.  Forces which 

need to be considered are shown in figure 386: 

 

 

 

 

 

 

 

 

Two forces are acting on the car as it rounds a curve: 

 The weight of the car, given by: 

    mg 

where m is the mass of the car and g is the acceleration due to gravity of 9.8m/s2. 

 The centrifugal effect.  This must be balanced by a centripetal force in order to keep 

the car on its circular path.  Both the centrifugal effect and the centripetal force have 

magnitudes of: 

𝑚𝑣2

𝑟
 

where m is again the mass of the car, v is its velocity in m/s2, and r is the radius of 

the curve in metres. 

N 

N sin Ɵ 

N cos Ɵ 

𝑚𝑣2

𝑟
 

Ɵ 
mg 

Figure 386:   

forces acting on a roller 

coaster travelling around 

a banked curve  
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If the car travels around the curve with exactly the correct velocity and banking angle so 

that there is no sideways force, all the force of the car will be downwards into the track.  

This will be balanced by a reaction force N which acts in an upwards direction perpendicular 

to the track. 

The normal reaction force N can be split into two components: 

(1)  A vertical component which balances the weight of the car 

𝑁 cos 𝜃 = 𝑚𝑔 
       (2)  A horizontal component which creates the centripetal force: 

𝑁 sin 𝜃 =
𝑚𝑣2

𝑟
 

Rearranging the first equation gives an expression for N in terms of the car weight and the 

angle of banking: 

𝑁 =
𝑚𝑔

cos 𝜃
 

Substituting for N in the second equation gives: 

(
𝑚𝑔

cos 𝜃
) sin 𝜃 =

𝑚𝑣2

𝑟
 

Since tan 𝜃 =  sin 𝜃 cos 𝜃 ,⁄  

𝑚𝑔 tan 𝜃 =
𝑚𝑣2

𝑟
 

Cancelling m on both sides and rearranging gives: 

 tan 𝜃 =
𝑣2

𝑟𝑔
 

We now have an equation which will give the banking angle Ɵ required for a curve of radius 

r and a car velocity v. 

The final curve of the roller coaster has a radius of 4.5 metres.  The train is decelerating 

from 7.7 m/s to 2.3 m/s as it rounds this curve, so we can assume an average velocity of 

5.0 m/s as the mid-section of the train passes through the curve.  Substituting these values: 

tan 𝜃 =
5.02

4.5 × 9.8
 

giving a result of 29o for the required angle of banking.  In practice, the velocity will vary 

above and below 5.0 m/s,  so the cars will need some frictional assistance to keep them on 

the track. 
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The exponential function 
 

There are many cases in science where the rate of change of some material is proportional 

to the quantity of the material currently present.  For example: 

 Bacterial growth when nutrient supply is not limited.  The rate at which new bacteria 

are added to the colony depends only on the number of bacteria reproducing. 

 Radioactive decay, where the number of atoms decaying depends only on the 

amount of the radioactive isotope present. 

 Discharge of an electronic capacitor, where the rate at which charge is leaving the 

capacitor depends on the amount of charge which is still held on the plates. 

We will examine these processes in more detail shortly, but first we will consider the 

underlying mathematics of exponential growth and decay. 

Suppose that a rate of change, such as the increase in the number of bacteria, is equal to 

the quantity itself.  We can experiment with a spreadsheet to try to find a mathematical 

function to describe this relationship. 

As a first guess, let us suppose that some time interval exists such that the number of 

bacteria will double during each of these intervals: 

                                     time    number of bacteria 

1   2 

2   4 

3   8 

4             16 

5             32                   ….  etc. 

This relationship is described by the equation: 

𝑦 = 2𝑥 

where y is the number of bacteria at time x.   

The rate of change in the number of bacteria can be determined numerically using Euler's 

method: 
𝑑𝑦

𝑑𝑥
=

𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑎𝑡 𝑡𝑖𝑚𝑒 (𝑛 + 1) − 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑎𝑡 𝑡𝑖𝑚𝑒 (𝑛) 

𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
 

Graphs of quantity y and rate of change 
𝒅𝒚

𝒅𝒙
 have been plotted in figure 387 using an x-

interval of 0.1 to give a reasonable accuracy.   

It is found that the value of 
𝒅𝒚

𝒅𝒙
 is consistently less than the value of y for any position along 

the horizontal axis.  This means that the function  

𝑦 = 2𝑥 

fails to correctly describe a situation where rate of change is equal to the quantity itself.   
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Figure 387:  graph of y=2x and its derivative 

We need to find a function which will allow the numbers of bacteria to increase more 

rapidly. We can investigate the function: 

𝑦 = 3𝑥 

which assumes that the number of bacteria will triple during each successive time interval: 

                                     time    number of bacteria 

1   3 

2   9 

3             27 

4             81               ….  etc. 

Graphs of quantity y and rate of change 
𝒅𝒚

𝒅𝒙
  for this function have been plotted in figure 388. 

 

 

 

 

 

 

 

 

 

 

𝑑𝑦

𝑑𝑥
 

𝑦 = 2𝑥 

𝑑𝑦

𝑑𝑥
 

𝑦 = 3𝑥 

Figure 388:  graph of y=3x and its derivative 
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We now find that the value of 
𝒅𝒚

𝒅𝒙
 is consistently greater than the value of y for any position 

along the horizontal axis.  The function 𝑦 = 3𝑥 again fails to describe a situation where rate 

of change is equal to the quantity itself, but is close to a correct result. 

By further experimentation, we find that the quantity y and its derivative 
𝒅𝒚

𝒅𝒙
 appear to be 

equal for all positions along the horizontal axis when a power of the number 2.7 is used.    

 

 

 

 

 

 

 

 

 

 

 

Figure 389:  graph of y=2.7x and its derivative 

This is a remarkable result whose importance cannot be over-stated.  We have found a 

function: 

𝑦 =
𝑑𝑦

𝑑𝑥
= 2.7𝑥 

such that the amount of a quantity is equal to the rate at which that quantity is changing.  

The power which we found to be approximately 2.7 can be calculated accurately as:    

                                                                     2.71828183… 

This number has been defined as the constant e, named in honour of Euler: 

𝐼𝑓       𝑦 = 𝑒𝑥,   𝑡ℎ𝑒𝑛   
𝑑𝑦

𝑑𝑥
= 𝑒𝑥 

Problems where the rate of change of some material is proportional to the quantity of the 
material currently present are often solved analytically using the exponential function y = ex, 
or some variant of this function. 
 
 
  

𝑑𝑦

𝑑𝑥
 

𝑦 = 2.7𝑥 
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Bacterial growth 
 
We can now look in more detail at the growth of a colony of bacteria on a newly inoculated 
medium in a laboratory experiment.  The process would typically involve four stages: 

 Lag phase, in which the number of bacteria initially remains constant.  During this 
time various processes are taking place, such as the synthesis of enzymes, which are 
necessary for growth to begin. 

 Exponential phase, during which there are few inhibiting factors and bacteria can 
readily reproduce. 

 Stationary phase, when growth is slowed and eventually halted.  This may be due to 
exhaustion of the nutrient supply, a build-up of waste materials from cell 
metabolism, or simply a limitation of space for the colony to grow further. 

 Death, in which the depletion of nutrients and build-up of waste materials cause a 
collapse in the bacteria population. 

 
We will focus our attention on the middle two stages of the process, as initial exponential 
growth then slows to produce a steady final population.  If we assume that the final 
population size is related to a constant K, and the number of bacteria present at time t is Nt, 
we can set up a recurrence relation: 

𝑁𝑡+1 = 𝜆𝑁𝑡 (1 −
𝑁𝑡

𝐾
) 

 

This equation calculates the number of bacteria which will be present in the next time 
interval, Nt+1, based on the number which are present at the current time, Nt.  The constant 
λ determines the rate of growth during a time interval: if λ is large then the bacteria will be 
reproducing more rapidly. 

At the start of the exponential growth phase, the number of bacteria will be very low in 
comparison to the final population size.  The term Nt / K is negligible, so the equation 
simplifies to: 

𝑁𝑡+1 = 𝜆𝑁𝑡 

This represents exponential growth, in which the increase in bacteria during each time step 
is directly proportional to the number of bacteria already present. 

As the colony increases, the term Nt / K becomes larger, so that the multiplying term in the 
brackets is reduced to a fraction less than 1.  At the point where: 
  

𝜆 × (1 −
𝑁𝑡

𝐾
) = 1 

 

 

 

then:  
𝑁𝑡+1 = 𝑁𝑡 

and the population remains constant from one time step to the next.   
 

𝜆 𝑖𝑠 𝑏𝑖𝑔𝑔𝑒𝑟 𝑡ℎ𝑎𝑛 1 
1 −

𝑁𝑡

𝐾
 𝑖𝑠 𝑠𝑚𝑎𝑙𝑙𝑒𝑟 𝑡ℎ𝑎𝑛 1 
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This situation is illustrated in figure 390, using the values:   

    λ = 2 
    K = 1 000 000 

Thus, at the equilibrium point,  

2 × (1 −
𝑁𝑡

1 000 000
) = 1 

𝑁𝑡

1 000 000
= 0.5 

so Nt =500 000.  The shape of graph produced is known as a logistic curve. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 390:  logistic curve for growth of a bacteria population using a numerical solution 

We have examined the logistic function using a numerical approach, but an analytical 

solution by algebra is also possible.  A starting point is the equation: 

𝑑𝑁

𝑑𝑡
=  𝜆𝑁 (1 −

𝑁

𝐾
) 

 which states that the rate of increase in the bacteria population is proportional to the 

current number of bacteria multiplied by the bracket term: 

(1 −
𝑁

𝐾
) 

which progressively reduces as the population approaches its limiting value. 
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By means of calculus techniques which are beyond the scope of this book, but can be found 

in advanced level textbooks of mathematics, the logistic equation can be integrated to give: 

𝑁 =
𝐶𝑒𝜆𝑡

1 +
𝐶
𝐾 𝑒𝜆𝑡

 

This uses exponential functions to calculate the number of bacteria N which would be 

present in the population at any time t.  C is another constant whose value is found during 

the integration, and depends on the initial and final numbers of bacteria in the population. 

An example graph plotted with this equation is shown in figure 391 below: 

 

Figure 391:  logistic curve for growth of a bacteria population using the analytic solution 

 

Carbon dating 

Carbon dating has become an important archaeological technique for determining the age 

of skeletons, or artefacts made from plant or animal materials such as wooden furniture or 

documents written on animal skin.  It can also be used to determine the age of plant and 

animal materials preserved in relatively young geological formations such as sediments from 

the Ice Age. 

Carbon exists naturally as two isotopes: 12C which is stable, and 14C which is unstable and 

undergoes radioactive decay to 12C.  The ratio of 12C to 14C in atmospheric carbon dioxide is 

close to constant.  This same carbon isotope ratio is found in the organic compounds of 

living organisms, produced directly by photosynthesis or ingested as food substances. 
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After the death of the organism, no further transfer of carbon from the environment occurs.  
Atoms of 14C decay to 12C at a known rate.  The number of years since the death of the 
organism can therefore be calculated by comparing the current carbon isotope ratio of the 
preserved material to the carbon isotope ratio at the time that the organism was living.  

The half-life for the 14C decay process is known to be 5,700 years.  After this period, the 
original quantity of 14C would be halved.  After a further half-life of 5,700 years, the quantity 
of 14C would be halved again.  We should note that the rate of change in the amount of 14C 
at any time is proportional to the amount of 14C still present, so: 

𝑑𝑦

𝑑𝑡
= −𝜆𝑦 

where y represents the amount of 14C and λ is a constant representing the rate of decay. 

The reduction in the 14C isotope content of a sample over time can be calculated 
numerically using a spreadsheet, as in figure 392 below.  

 

 

 

 

 

 

 

 

 

Figure 392:  negative exponential curve for the radioactive decay of 14C 

Alternatively, algebraic techniques can be used to obtain the formula: 

𝑁(𝑡)  =  𝑁0𝑒−𝜆𝑡   

where N(t) is the number of grams of 14C remaining in the sample at time t, N0 is the original 

number of grams of 14C in the living material, and λ is a constant which can be calculated 

from the half-life.   

It is valuable for students to see how this equation is derived, so that they gain an 

appreciation of the way that analytical methods are used in calculus.  We begin with a 

statement that the rate of decay of 14C atoms is proportional to the number present: 

𝑑𝑁

𝑑𝑡
= −𝜆 𝑁  
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Terms involving N are moved to the left of the equals sign.  This is known as separation of 

variables: 

𝑑𝑁

𝑁
= −𝜆 𝑑𝑡 

We then set up integrals on each side of the equation.  Since λ is a constant, it can be left 

outside the integral: 

∫
1

𝑁
𝑑𝑁 = − 𝜆 ∫ 𝑑𝑡 

The integral of 1/N with respect to N can be found in tables of standard integrals, and has 

the value loge N.  The right hand integral with respect to t is empty, so takes the value t.  

This gives:   

𝑙𝑜𝑔𝑒𝑁 = −𝜆𝑡 + 𝐶 

Notice that a constant has been added.  This must always be done when integration is 

carried out.  We now need to find the value of this constant.  We see that the number of 14C 

atoms at time t = 0 is N0.  Substituting in the previous equation: 

𝑙𝑜𝑔𝑒𝑁0 = 𝐶 

We can then substitute the value logeN0 for C: 

𝑙𝑜𝑔𝑒𝑁 = −𝜆𝑡 + 𝑙𝑜𝑔𝑒𝑁0 

𝑙𝑜𝑔𝑒𝑁 −  𝑙𝑜𝑔𝑒𝑁0  = −𝜆𝑡 

Using the property of logarithms that log A – log B = log (A/B), we obtain: 

𝑙𝑜𝑔𝑒 (
𝑁

𝑁0
)  = −𝜆𝑡 

We now raise each side of the equation to the power of e.  This has the effect of reversing 

and removing the logarithm function, giving: 

𝑁

𝑁0
= 𝑒−𝜆𝑡 

This equation can be rearranged to give the required solution:  

𝑁 = 𝑁0 𝑒−𝜆𝑡 

 

For practical application of the carbon dating method, it is necessary to know the 14C to 12C  

ratio for the organism at its time of death, and also to be able to measure the current 14C to 
12C  ratio accurately.  Both of these requirements are subject to some error, so the final 

calculated age is usually stated to be within a range of possible dates. 
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Our students have had interesting practical experience of the use of carbon dating during a 

geological and ecological investigation of a large area of peat blanket bog in the 

mountainous source area of the River Mawddach in Snowdonia.  In places, the peat has 

been subject to erosion, exposing a layer of tree roots at the base. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 393:  layer of tree roots at the base of peat deposits, Waen y Griafolen, North Wales 

Above:  eroded peat deposits. 

 

Left:  layer of tree roots overlying 

fine gravel at the base of the peat. 

 

Right:  detail of tree roots 

embedded in the peat. 
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A sample from the tree root layer was submitted to the Oxford University Radiocarbon 

Accelerator Unit for dating.  The result obtained was an age of 8,905 ± 45 years before the 

reference year AD 1950. This date represents the earliest return of forests to the uplands of 

western Britain following the end of the Ice Age (Bellamy, 1986). The roots are likely to be 

alder, which is known to have been present in Snowdonia at a time of 8,700 b.p. (Chambers 

and Price, 1985).  At a slightly higher horizon within the peat are found water-transported 

birch branches.  We have deduced that the blanket bog developed on the site of an 

extensive shallow lake overgrown by wet woodland.  Peat accumulation appears to have 

continued with little interruption for the past 9,000 years, with mosses, heathers and other 

dwarf shrubs as the principal vegetation.  

 

Capacitor charging and discharging 

In Chapter 6, Measurement, we looked at a workshop experiment in electronics to produce 

a full-wave rectifier circuit.  This included damping of the output voltage by capacitor, 

leading to a ripple effect when viewed on an oscilloscope screen: 

 

 

 

 

 

 

We will now set up a spreadsheet model to simulate the output for this circuit.  We begin 

with a bridge rectifier producing a sine wave output of positive peaks: 

 

 

 

 

 

 

 

 

 

During the period when voltage is near its peak, the electrical charge in the smoothing 

capacitor can be replenished.  This charge is then available to augment the output of the 

Figure 394:   

oscilloscope displaying the output 

voltage from the full-wave 

rectifier circuit 

Figure 395:   

positive sine wave output from 

the bridge rectifier 
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circuit when the voltage falls.  However, the voltage output from the capacitor itself will fall 

as charge is lost.  The drop in capacitor voltage with time t can be specified by a negative 

exponential equation similar in pattern to the radioactive decay equation: 

𝑉(𝑡) = 𝑉0 𝑒−(𝑡 𝑅𝐶⁄ ) 

 V(t) is voltage at time t, V0 is the voltage when the capacitor is fully charged, R is the circuit 

resistance, and C is the capacitance.  We can deduce that the power of e will be larger, and 

voltage will therefore fall more quickly, if the resistance or the capacitance in the circuit is 

low.   A spreadsheet to simulate the rectifier output can be set up using the following steps: 

 Constants are assigned to specify the peak voltage V0 of 240V, a resistance R with a 

typical value of 1000 Ω, and a capacitance C of 0.0001 F.  Voltage angles Ɵ for the 

alternating current are set up at 50 intervals from 00 to 7200. 

 Sine wave output is calculated using: 

𝑉 = 𝑉0 sin 𝜃 

 Sine waves are rectified to produce only positive peaks by means of the spreadsheet 

function ABS( ), which converts any negative values to their positive equivalent.  

 An angle φ is defined which counts upwards in the same way as Ɵ, but is reset to 

zero at each sine wave peak.  This angle is calculated from Ɵ using a MOD 

spreadsheet function: 

φ  = MOD((Ɵ+90), 180) 

 The angles φ are converted to times t in seconds, based on an alternating current 

frequency of 50Hz.  Each cycle of 3600 will represent 1/50th of a second. 

 Capacitor output voltage is then calculated using the equation: 

𝑉(𝑡) = 𝑉0 𝑒−(𝑡 𝑅𝐶⁄ ) 

 Finally, the spreadsheet IF function is used to compare the rectified sine wave and 

capacitor voltages, then select the higher of the two for output to the graph.  

Figure 396:  spreadsheet simulation of the full-wave rectifier circuit 
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The completed spreadsheet for simulating the rectifier circuit is shown in figure 396 

above.  The initial values set for the resistance and capacitance of the circuit can now be 

varied to investigate the effects on circuit output.  It is seen that the voltage ripple can 

be effectively removed by choice of a sufficiently large capacitor. 

 

 

 

 

 

 

 

 
 

Figure 397:  simulation of the full-wave rectifier circuit with large capacitance 

 

Solid Shapes 

An important use of integration is in finding the volumes and surface areas of solid shapes.   
As an example, a geometrical problem has been used to introduce engineering students to 

calculus at the start of their course.  Students are asked to estimate the volume of the centre 
cone of a jet engine air intake fan (figure 398): 
 
 

 

 

 

 

 

 

 

  

Figure 398:   

aircraft engine showing 

the air intake fan 
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The conical central section of the fan has a depth of 0.5m.  The profile of the cone follows 

the mathematical function:  

𝑦 = √2𝑥 

Students were told that the volume of the cone needed to be found, so that its mass could 

be calculated for modelling the rotation of the fan. 

 

 

 

 

 

 

 

 

 

In discussion with the student group, it was agreed that the volume could be estimated by 

dividing the cone into a series of cylinders spanning the x-range from 0 to 0.5m, with the 

volumes then calculated and totalled using a spreadsheet: 

 

 

 

 

 

 

 

Figure 400:  approximation of the cone volume as a series of discs 

Results of the spreadsheet calculation are shown in figure 401 below.   

The alternative analytic approach for solving this problem again carries out the integration 

of thin discs over the range of x-values from 0 to 0.5m:   

∫ 𝜋𝑟2

0.5

0

. 𝑑𝑥   =     𝜋 ∫ (√2𝑥)
2

0.5

0

. 𝑑𝑥   =     𝜋 ∫ 2𝑥

0.5

0

. 𝑑𝑥 

π is a constant, so can be removed from the integral.   

Figure 399:   

profile of the central cone 

of the air intake fan 

h 

r 
       𝑣𝑜𝑙𝑢𝑚𝑒 = ∑ 𝜋𝑟2ℎ

0.5

0
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Using methods which can be found in advanced level mathematics textbooks: 

𝜋 ∫ 2𝑥

0.5

0

. 𝑑𝑥 =  𝜋 [𝑥2]0
0.5 

= 𝜋 [0.52 − 02] 

  = 0.25𝜋 

   = 0.7854 𝑚3 

It is pleasing that the solution found by the numerical spreadsheet method and the 

analytical formula solution are in agreement to at least four decimal places.  This gives us 

confidence that numerical methods can provide practical answers to calculus problems if an 

analytical approach proves to be difficult. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 401:  numerical solution of the aircraft engine problem  

 

Volume of a sphere 

A familiar formula from GCSE mathematics is the volume of a sphere: 

𝑉 =
4

3
𝜋𝑅3 

where R is the sphere radius.  Without knowing this formula, calculus allows us to work 

from first principles to determine the volume of any sphere by numerical methods.  Indeed, 

the formula itself can be derived by calculus techniques, as we will demonstrate. 

total                          m3 
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To determine the volume of a sphere without the use of the volume formula, we begin by 

dividing the sphere into a series of thin discs in a similar way to the aircraft engine problem: 

 

 

 

 

 

 

 

 

 

As an example, we will take the radius of the sphere to be 3.5cm.  A numerical solution is 

shown in figure 404 below.  The upper hemisphere has been divided into 20 discs.  The 

radius of each disc is taken as the mean of the radius at the upper and lower surfaces of the 

disc.   We calculate each radius by Pythagoras' theorem: 

  

 

 

 

 

 

 

If we specify the height y of the disc above the base of the hemisphere, the radius r of the 

disc is given by:  

𝑟 = √𝑅2 − 𝑦2 

The volume of each disc can then be calculated as: 

𝑣 = 𝜋𝑟2𝑡 

where t is the disc thickness.  The volumes calculated for the twenty discs are added to 

obtain the volume of the hemisphere, then the result is doubled to give the volume of the 

whole sphere. 

 

 

 

dy 

x 

y 

r 
Figure 402:   

representation of a 

sphere as a series of 

thin discs 

x  

y  
R  

Figure 403:   

determining the radius 

of a disc within the 

sphere using 

Pythagoras' theorem 
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Figure 404:  numerical solution for the volume of a sphere 

 

We can compare this result of 179.01 cm3 with the exact answer, calculated using: 

𝑉 =
4

3
𝜋𝑅3 

which is 179.59 cm3.  In this instance, the numerical solution might not be sufficiently 

accurate. We would expect that the accuracy of the numerical solution could be improved 

by increasing the number of discs in the calculation, but the spreadsheet then becomes 

large and cumbersome.  There can be advantages in obtaining exact solutions analytically in 

cases where a standard formula is already available, or where a formula can be easily 

obtained using calculus techniques. In the next section, we demonstrate how the volume 

formula is derived. 

As in the numerical method, we consider a hemisphere to be made up of discs.  The 

integration assumes that there are an infinite number of infinitely thin discs, so that the 

volume is calculated exactly.  The hemisphere volume is then doubled to give the complete 

sphere:   

𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑝ℎ𝑒𝑟𝑒 = 2 ∫ 𝜋𝑟2. 𝑑𝑦
𝑅

0

 

Since π is a constant, it can be moved outside of the integral: 

 𝑉 = 2𝜋 ∫ 𝑟2. 𝑑𝑦
𝑅

0
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The radius of each disc can be calculated by Pythagoras' theorem, as shown previously in 

figure 403:  
𝑟2 = 𝑅2 − 𝑦2 

Substituting for r2 in the integral: 

𝑉 = 2𝜋 ∫ 𝑅2 − 𝑦2. 𝑑𝑦
𝑅

0

 

We now carry out the integration with respect to the variable y.  Using calculus methods 

which are explained in advanced level mathematics textbooks, the integral of R2 is R2y, and 

the integral of y2 is 1/3 y3, giving: 

𝑉 = 2𝜋 [𝑅2𝑦 −  
1

3
𝑦3]

0

𝑅

 

A result is calculated by substituting the upper limit R, then the lower limit 0, in place of the 

variable y, and subtracting the lower value from the upper value.  The lower limit gives a 

result of zero, so: 

𝑉 = 2𝜋 [(𝑅3 −  
1

3
𝑅3) − 0] 

𝑉 = 2𝜋 (𝑅3 −  
1

3
𝑅3) 

𝑉 = 2𝜋 ( 
2

3
𝑅3) 

𝑉 =
4

3
𝜋𝑅3 

We have completed the derivation of the volume formula for a sphere. 

Optimisation models 

Another important application of calculus is in finding the optimum solution for problems 

where a range of results are possible.  As a simple example, consider the following question: 

A farmer wishes to enclose a grazing area within a large field by means of a 

temporary electric fence.  He has 200 metres of fencing material. One side of the 

field already has a permanent hedge, so will not need to be fenced.  Determine the 

largest rectangular area that can be enclosed, and the lengths of its sides. 

 

 

 

 

 

 

hedge 

enclosure 

field 

Figure 405:  field enclosure optimisation problem 

x 

y 
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To solve this problem, we begin by representing the sides of the fence enclosure by the 

variables x and y, as shown in figure 405 above.  The objective is then to maximise the area 

A of the enclosure: 

𝐴 = 𝑥 . 𝑦 

We have to take into consideration the requirement that the total length of fencing is 200 

metres. The equation for the perimeter of the enclosure is therefore: 

𝑥 + 2𝑦 = 200 

Hence: 
𝑥 = 200 − 2𝑦 

Substituting the value for x in the area formula gives:  

𝐴 = (200 − 2𝑦) 𝑦 

𝐴 = 200𝑦 − 2𝑦2 

This formula can be used to calculate the area of the enclosure for different values of y.  The 

maximum possible length of y is 100 metres, leaving no fence material for the width x of the 

enclosure.  Results produced by spreadsheet are shown in figure 406 below.   

 

Figure 406:  area of the field enclosure for different shapes of fence rectangle 

The maximum area of 5 000 m2 occurs when y has a length of 50m.  The corresponding 

value for x can be calculated as: 

200 − 2 × 50 = 100𝑚 

As with most calculus problems, it is also possible to solve this question by an analytical 

method.  Looking at the graph curve in figure 406, we notice that: 

 For values of y less than the maximum, the gradient is positive, sloping uphill. 

 At the maximum point, the gradient is zero with the graph line horizontal. 

 For values of y greater than maximum, the gradient is negative, sloping downhill. 
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This forms the basis of the analytical solution method.  We begin by finding the derivative of 

the area equation, which will tell us the gradient of the curve for any y value. Using the 

ruloes of calculus which can be found in advanced level mathematics textbooks:  

𝐴 = 200𝑦 − 2𝑦2 

𝑑𝐴

𝑑𝑦
= 200 − 4𝑦 

The graph of the derivative is plotted by spreadsheet in figure 407 below: 

 

 

 

 

 

 

 

 

 

 

Figure 407:  graph of the derivative of the area equation 

 

We find that the graph line passes through zero at a y value of 50.  This corresponds to the 

maximum point, where the gradient of the area graph was zero.  The derivative curve shows 

positive gradient values when y is less than the maximum, and negative gradient values 

when y is greater than the maximum.   

It is often more accurate to calculate the maximum position directly from the derivative 

equation using algebra, rather than by plotting a graph.  We set the value of the derivative 

to zero at the maximum point, then solve for y: 

200 − 4𝑦 = 0 

4𝑦 = 200 

𝑦 = 50 

which agrees with the result we obtained previously. 
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The next optimisation problem involves both area and volume: 

A manufacturer needs to make a cylindrical can that will hold 1.5 litres of 

liquid.  Determine the dimensions of the can that will minimize the amount of 

material used in its construction. 

 

 

 

 

 

  

Figure 408:  container to be manufactured 

The can will be made up from three pieces of metal: two ends, plus a cylinder formed from a 

rectangle of material.  We can write formulae for the areas of these components, based on 

the radius r and the height h of the can. 

 

 

  

  

  

  

  

 

 

Figure 409:  surface areas of components of the container 

It will be convenient to work in units of centimetres.  1 litre is equivalent to 1000 cm3.  The 

objective is to minimise the surface area of the container: 

𝐴 = 2𝜋𝑟2 + 2𝜋𝑟ℎ 

This is subject to a requirement that the volume of the container is 1.5 litres.  We can 

produce an equation for the volume of the cylinder, as the area of the circular base 

multiplied by the height h: 
𝑉 =  𝜋𝑟2ℎ =   1500 𝑐𝑚3 

Rearranging this equation gives an expression for the height in terms of the cylinder radius: 

ℎ =
1500

𝜋𝑟2
 

area = πr2 area = πr2 
length = 2πr 

h 

area = 2πrh 

r 

h 
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Substituting for h in the area equation gives: 

𝐴 = 2𝜋𝑟2 + 2𝜋𝑟 (
1500

𝜋𝑟2
) 

𝐴 = 2𝜋𝑟2 +
3000

𝑟
 

This formula can be used to the calculate area of material needed to construct cans of 

different radius r.  Results produced by spreadsheet are shown in figure 410 below.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 410:  graph of surface area for cylindrical cans of different radius 

The minimum area shown in the table of figures is 726 cm2, corresponding to a radius of 

6cm.  However, we cannot be certain that the true minimum is not some other value close 

to this.  It is difficult to identify the true minimum from the graph, as the curve is close to 

horizontal over the range of r values between 5cm and 7cm. 

To obtain a more accurate solution to the problem, an analytical method can be used.  

Looking at the graph curve in figure 410, we notice that: 

 For values of r less than the minimum, the gradient is negative, sloping downhill. 

 At the minimum point, the gradient is zero with the graph line horizontal. 

 For values of r greater than minimum, the gradient is positive, sloping uphill. 

As in the case of the field enclosure problem earlier, we can calculate the derivative of the 

area formula and use this to find the point where the gradient of the area graph is zero.  

This will give the position of the minimum on the curve.   
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Using rules of calculus to find an expression for the derivative: 

𝐴 = 2𝜋𝑟2 +
3000

𝑟
 

𝑑𝐴

𝑑𝑟
= 4𝜋𝑟 −

3000

𝑟2
 

The graph of the derivative is plotted by spreadsheet in figure 411 below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 411:  graph of the derivative of the area equation 

We see from the table of figures that the derivative changes from negative to positive 

between r = 6 and r = 7, so the exact position of the minimum must lie in this interval. 

At the minimum the gradient has a value of zero, so 

4𝜋𝑟 −
3000

𝑟2
= 0 

Rearranging: 

4𝜋𝑟3 − 3000

𝑟2
= 0 

To remove the division, we can multiply both sides of the equation by r2 : 

4𝜋𝑟3 − 3000 = 0 

𝑟3 =
3000

4𝜋
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Taking a cube root to find the result for the radius: 

𝑟 = √
3000

4𝜋

3
 

𝑟 = 6.20 𝑐𝑚 

We can now find the height of this can: 

ℎ =
1500

𝜋𝑟2
 

ℎ =
1500

𝜋(6.20)2
 

ℎ = 12.42 𝑐𝑚 

The cylindrical 1.5 litre can using the minimum of material therefore has a radius of 6.2cm 

and a height of 12.4cm.    

 

It is sometimes the case with optimisation problems that no algebraic formula is available to 

analyse, and a solution can only be found by numerical methods.  As an example consider 

the situation shown in figure 412 below: 

A group is undertaking an expedition.  As part of the route, it is necessary to travel 

on foot from the waterfall at point A to the road junction at point B.  The group must 

cross rough moorland to reach a forestry road, then follow this to the destination.  

Six possible routes A – F are marked on the map.  Which would be fastest? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

point B 

point A 

route A 

route C route D 

route F 

route E 

route B 

Figure 412:  map of possible routes between points A and B 
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The group will be able to travel faster along the forestry road than across the rough 

moorland.  From previous experience in similar terrain, it is known that the speed along the 

road will be approximately 4 km/h, whilst the speed across the moorland will be only 1.5 

km/hour. 

Measurements for the possible routes A to F are shown in figure 413.   

 One possible strategy for the group is to reach the forestry road by the shortest 

route A.  This will minimise the distance across the rough moorland at a slow pace, 

but will mean a longer walk along the road. 

 An alternative strategy is to head directly for the destination by following route F 

across the moorland.  This minimises the overall distance to be covered, but means a 

slow journey across difficult terrain. 

 Routes B-E represent different degrees of compromise between the previous two 

strategies.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 413:  distances for possible routes from point A to point B 

 

To investigate this problem, journey distances and times have been calculated by 

spreadsheet, and results are displayed as graphs in figure 414 below.  We find that route B 

is the fastest, crossing fairly directly to the road.  However, it would also be quick to take 

route E which keeps mainly to the moorland in order to minimise the overall distance 

travelled. 

  

point B 

point A 

route A 

route F 

route D 
route C 

1.6km 

1.25km 1.15km 

0.55km 

0.9km 

0.15km 

1.3km 

0.7km 

1.9km 

route B 

0.65km 

route E 

1.35km 
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Figure 414:  distances and times for the alternative routes  

Summary 

Calculus has two main uses: 

 Differentiation to determine the rate at which quantities are changing.  Examples 

are: using measurements of velocity at different intervals to determine acceleration, 

or using the quantity of radioactive material to determine how many atoms will 

decay during the next time period.  Rates of change can also be useful in finding 

maximum and minimum values, as the rate of change becomes zero at these points. 

 Integration to determine totals of a series of values obtained at intervals.  Examples 

are: determining the total distance travelled from measurements of velocity at a 

series of points, or determining the volume of a solid shape from its cross sectional 

area at a series of points. 

Calculus problems can often be solved using numerical methods, with results displayed as 

tables of figures or graphs.  The alternative is to use algebraic analysis.  Both of these 

approaches have advantages and limitations: 

 Numerical solutions may be easier to understand and can be more easily checked 

against the real world situation.  In some situations, no simple formulae may be 

available to describe the system, so a numerical solution is the only possibility.  

However, numerical solutions may only be approximate. 

 Analytical solutions give precise answers, so may be necessary when high accuracy is 

essential.  It is often quickest to use analytical solutions if a formula is available.  

However, finding a suitable formula may sometimes be difficult or impossible. 

road 

moorland 

total 

road 

moorland 

total 


